References

A project is underway to complete the Virtual Fossil Museum's Blibliography, which will be here. We also plan to create an Endnotes library and make it available foe down loading.

Some Favorite Paleontology Links


In some cases links are to the PubMed citation, which will have a link to actual articles if they have become publicly available. In most cases, PubMed provides the abstract.

Reference Categories and Links:
Arthropods (evolution and phylogeny)
Burgess Shale
Cambrian Explosion (metazoa, balaterans)
Chengjiang
Doushantuo Formation
Exceptional Fossil Preservation
Fossil Record
Fossilization
House Range of Utah
Insects
Jawless Fish
Kaili Biota
Krukowski Quarry
Lebanon Lithographic Limestone
McAbee Fossil Beds
Paleobiology: Fossils through Time
Paleogeography and Plate Tectonics
Pioche Formation
Stromatolites
Taxonomy and Systematics
Trilobites
Vendian Fossils


Arthropods (evolution and phylogeny)

  • Bergstrom J, Hou x. (2003) Arthropod Origins. Bulletin of Geosciences 78(4) 323-334. [PDF]
  • Tree of Life Project [HTML]

Burgess Shale

  • Conway M.S. The Middle Cambrian metazoan Wiwaxia corrugata from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Phil. Trans. R. Soc. Lond. B 307, 507-582 (1985).
  • Butterfield, N.J. Organic Preservation of Non-Mineralizing Organisms and the Taphonomy of the Burgess Shale Paleobiology, 16, No. 3 (Summer, 1990), pp. 272-286
  • Butterfield, N.J. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology 16, 287-303 (1990).
  • Conway-Morris, S. & Peel, J.S. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Phil. Trans. R. Soc. Lond. B 347, 305-358 (1995).
  • Showdown on the Burgess Shale - by Simon Conway Morris and Stephen Jay Gould
  • Conway-Morris, S. & Whittington H. B. . 1979. Animals of the Burgess Shale. Scientific American 241: 122-133
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, Chapter 4, p. 61-89. [Link]
  • Fletcher, T. P. & Collins, D. H. (1998) [PDF] The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences 35: 413-436.
  • Fletcher, T. P. & Collins, D. H. (2003) [PDF] The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences 40: 1823-1838.
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, p. 61-89. [PDF]

Cambrian Explosion (metazoa, balaterans)

  • Blair JE and Blair SH (2005) Molecular Phylogeny and Divergence Times of Deuterostome Animals, Molecular Biology and Evolution 22(11):2275-2284 [Journal]
  • Briggs DEand and Fortey RA (2005) Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation Paleobiology; 31(2) Suppl, 94-112. [Abstract]
  • Budd GE and Soren J (2000) A critical reappraisal of the fossil record of the bilaterian phyla, Biological Reviews, 75: 253-295 [Journal]
  • Eldredge, N. and Gould, S.J. (1972) Punctuated equilibria: an alternative to phyletic gradualism pp 82-115 in Models in paleobiology, edited by Schopf, TJM Freeman, Cooper & Co, San Francisco. [PDF]; This is a famous essay which criticizes the theory of phyletic gradualism and argues that evolution proceeds in a pattern of punctuated equilibrium.
  • Gould, SJ, Wonderful Life (W.W. Norton, 1989), ISBN 0-393-02705-8
  • Ohno S, The reason for as well as the consequence of the Cambrian explosion in animal evolution. J Mol Evol. 1997;44 Suppl 1:S23-7. [Pubmed]
  • Peterson KJ, et. al. (2004), Estimating metazoan divergence times with a molecular clock, PNAS 101 (17) 6536-6541. [Journal]
  • Valentine JW, Jablonski D, and Erwin DH. (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion, Development, 126(5) 851-859. [Abstract] [PDF] [References]
  • Wang DY, Kumar S, Hedges SB., Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999 Jan 22;266(1415):163-71. [Pubmed] [PDF]
  • Xu PX, (199) Regulation of Pax6 expression is conserved between mice and flies, Development, (126)2 383-395 [HTML] [PDF]

Chengjiang (Maotianshan Shales)

  • Briggs, D. E. G., B. S. Lieberman, S. L. Halgedahl, and R. D. Jarrard, 2005. A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia, Palaeontology, 48, 681-686.
  • Budd, G. E. (2002). A palaeontological solution to the arthropod head problem. Nature, 417(6886), 271-275.
  • Chen, Jun-Yuan; Edgecombe, Gregory D.; Ramskold, Lars; Zhou, Gui-Qing (1995). Head Segmentation in Early Cambrian Fuxianhuia: Implications for Arthropod Evolution, Science 268 (5215) 1339-1343.
  • Chen, Junyaun; Cheng, Yen-nien; Iten, H.V. 1997; The Cambrian Explosion and the Fossil Record, Bulletin Of The National Musuem of Natural Science, Taiwan, 320 pp.
  • Conway Morris, S. (1993) The fossil record and early evolution of the Metazoa. Nature, vol. 361, 21 January, pp. 219-225
  • Conway Morris, S. (1998,) The Crucible of Creation: The Burgess Shale and the Rise of Animals, Oxford University Press 242 pp.
  • Conway-Morris, S. (2003). The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied? Int J Dev Biol, 47(7-8), 505-515.
  • Cotton, T; and Braddy, S. (2004) The phylogeny of arachnomorph arthropods and the origins of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 169–193.
  • Dong XP, Donoghue PC, Cunningham JA, Liu JB, Cheng H. (2005) The anatomy, affinity, and phylogenetic significance of Markuelia., Evol Dev. Sep-Oct;7(5):468-82.
  • Dominguez, P and Jefferies, R. Fossil evidence on the origin of appendicularians. International Urochordate Meeting 2003.
  • Gould, Stephen Jay, Wonderful Life 1989, WW Norton & Company Press, 347 pp.
  • Hou, X. G.; Bergstrom J, (1991) The arthropods of the Lower Cambrian Chengjiang fauna, with relationship and evolutionary significance, p. 179-187. In A. M. Simonetta and S. Conway Morris (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.
  • Hou, X. G.; Bergstrom J, Wang H., Feng X; and Chen A (1999) The Chengjiang Fauna: Exceptionally Well-Preserved Animals from 530 Million Years Ago. Yunnan Science and Technology Press, Kunming, p. 80. (In Chinese with English summary)
  • Hou, Xian-Guang; Aldridge, Richard J., Bengstrom, Jan; Siveter, David J. ;Feng, Xiang-Hong 2004; The Cambrian Fossils of Chengjang, China, Blackwell Science Ltd, 233 pp.
  • Early Cambrian Chengjiang Faunu from Kunming Region
  • Jin, G.; Hou X, and Wang H. (1993) Lower Cambrian pediculate lingulids from Yunnan, China. Journal of Paleontology, 67(5): 788-798.
  • Liu J, Han J, Simonettaa M, Hu S, Zhang Z, Yao Y and Shu Degan (2006) New observations of the lobopod-like worm Facivermis from the early cambrian Chengjiang Lagerstätte, Chinese Science Bulletin 51(3) ISSN 1001-6538 [Abstract]
  • Luo, H.; Hu S; Zhang S.; Tao, Y. (1997). New occurrence of the Early Cambrian Chengjiang fauna from Haikou, Kunming, Yunnan province, and study on trilobiroidea. Acta Geologica Sinica, 71(2):98-104.
  • Luo, H.; Hu S; Chen, Z; Zhang S.; Tao, Y. (1999) Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science and Technology Press, Kunming, China, p. 88. (In Chinese with English summary)
  • Luo, H; Shu D; J. Han F; Zhang S. (2004) A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods. Chinese Science Bulletin, 49(10):1063-1071.
  • Monge-Najera, J., & Hou, X. (2000). Disparity, decimation and the Cambrian "explosion": comparison of early Cambrian and present faunal communities with emphasis on velvet worms (Onychophora). Rev Biol Trop, 48(2-3), 333-351.
  • Shu, D-G; Luo, H-L; Conway Morris, S.; Zhang X-L; Hu, S-X; Chen, L. ;Han, J.; Zhu, M.;Li, Y; Chen, L-Z 1999, Lower Cambrian Vertebrates from South China, Nature 402 pp 42-46.
  • Shu, D. G., Morris, S. C., Han, J., Chen, L., Zhang, X. L., Zhang, Z. F., et al. (2001). Primitive deuterostomes from the Chengjiang Lagerstatte (Lower Cambrian, China). Nature, 414(6862), 419-424.
  • Shu, D. G., Chen, L., Han, J., & Zhang, X. L. (2001). An Early Cambrian tunicate from China. Nature, 411(6836), 472-473.
  • Shu, D., Morris, S. C., Zhang, Z. F., Liu, J. N., Han, J., Chen, L., et al. (2003). A new species of yunnanozoan with implications for deuterostome evolution. Science, 299(5611), 1380-1384.
  • Shu, D. G., Morris, S. C., Han, J., Zhang, Z. F., & Liu, J. N. (2004). Ancestral echinoderms from the Chengjiang deposits of China. Nature, 430(6998), 422-428.
  • Shu, D. G., Morris, S. C., Han, J., Li, Y., Zhang, X. L., Hua, H., et al. (2006). Lower Cambrian vendobionts from China and early diploblast evolution. Science, 312(5774), 731-734.
  • Vannier J.; Chen J-Y., (2000) The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda), Lethaia, Volume 33, Number 4, 28 November 2000, pp. 295-311(17)
  • Waloszek, D., & Maas, A. (2005). The evolutionary history of crustacean segmentation: a fossil-based perspective. Evol Dev, 7(6), 515-527.
  • Xian-guang, H., Aldridge, R. J., Siveter, D. J., & Xiang-hong, F. (2002). New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc Biol Sci, 269(1503), 1865-1869.
  • Zhang, X. G., Hou, X. G., & Emig, C. C. (2003). Evidence of lophophore diversity in early Cambrian brachiopoda. Proc Biol Sci, 270 Suppl 1, S65-68.
  • Zhang, X.; Han J.; Zhang Z.; Liu H.; and Shu D. (2003) Reconsideration of the supposed naraoiid larva from the Early Cambrian Chngjiang Lagerstätte, South China. Palaeontology 46(3):447-66.
  • Zhang, X. G., & Hou, X. G. (2004). Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis. J Evol Biol, 17(5), 1162-1166.
  • Hou, X.G., Aldridge, R., Siveter, D.J., Wlliams, M., Zalasiewicz, J, and Ma, X (2011). An Early Cambrian Hemichordate Zooid. Current Biology, 24 March.

Doushantuo Formation:

  • Bailey, J. V., et. al. (2007) Evidence of giant sulphur bacteria in Neoproterozoic phosphorites Nature. 445, 198–201.
  • J. W. Hagadorn, et. al. (2006) Cellular and subcellular structure of neoproterozoic animal embryos. Science 314, 291-294 [Abstract]
  • Jun-Yuan Chen, et. al.. (2004) Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian. Science 305 (5681), 218. [HTML]
  • Stefan Bengtson and Graham Budd (2004) Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" Science 306 (5700), 1291a. [HTML]
  • Jun-Yuan Chen, et. al. (2004) Response to Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" Science 306 (5700), 1291b. [HTML]
  • J.-Y. Chen, et. al. (2006) Phosphatized polar lobe-forming embryos from the precambrian of southwest china. Science 312, 1644-1646. [Abstract]
  • Chuanming, Zhou, et. al., (2001) Three-Dimensional Phosphatic Preservation Of Giant Acritarchs From The Terminal Proterozoic Doushantuo Formation In Guizhou And Hubei Provinces, South China. Palaeontology, 44(6) 1157-1178.
  • Jun-Yuan Chen, et. al. (2004) Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. PNAS 97 (9 ) 4457-4462. [HTML]
  • S. Xiao, Y. Zhang, A. Knoll, (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite Nature 391, 553. [Abstract]
  • Bengtson, Stefan; Zhao, Yue (1997) Fossilized Metazoan Embryos from the Earliest Cambrian. Science (277) 1645-1648.
  • Hagadorn JW, Xiao S, Donoghue PC, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Chongyu Y, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of neoproterozoic animal embryos. Science 314(5797):291-4

Exceptional Fossil Preservation:

  • Corsetti, F. A., and Hagadorn, J.W., 2003, The Precambrian-Cambrian transition in the southern Great Basin, USA: The Sedimentary Record, p. 4-8. [Link]
  • Hagadorn, J.W., 2002, Burgess Shale-type localities: The global picture, in Bottjer, D.J., et al., eds.,
  • Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, Chapter 5, p. 91-116. [Link]
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, Chapter 4, p. 61-89. [Link]
  • Hagadorn, J.W., 2002, Chengjiang: Early record of the Cambrian explosion, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, Chapter 3, p. 35-60. [Link]
  • Petrovich, R, (2001) Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other localities. American Journal of Science (301) 683-726. [PDF] [Abstract]
  • Taphonomy of the Rhynie Chert konservat Lagerstätte [website]

Fossil Record :

  • Forterre P, Gribaldo S, Brochier C (2005). Luca: the last universal common ancestor. Med Sci (Paris). Oct;21(10):860-5. [Pubmed]
  • The Journal of Taphonomy
  • Paul CRC and Donovan SK, (1998) An overview of the completeness of the fossil record. in The Adequacy of the Fossil Record (Paul CRC and Donovan SK eds). 111-131 (john Wiley, New York).
  • Shipman, P. (1981) Life history of a fossil: An introduction to taphonomy and paleoecology. Harvard University Press.
  • J. William Schopf, JW. Solution to Darwin's dilemma: Discovery of the missing Precambrian record of life, PNAS 97(13) 2000, 6947-6953. [HTML]
  • Smith AB (1998) What does paleontology contribute to systematics in a molecular world. Molecular Phylogenetics and Evolution. 9(437-447.
  • Woese CR, Olsen GJ (1986). Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol. 7:161-77 [PubMed]
  • Woese, C. 1998. The universal ancestor. PNAS 95:6854-6859. [PNAS]
  • Woese, C. R., O. Kandler, and M. L. Wheelis. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576-457 [PNAS]
  • Woese C , Fox GE, (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. PNAS. USA 74: 5088-5090. [Pubmed]

Fossilization

  • Hagadorn, J.W., 2002, Burgess Shale-type localities: The global picture, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, p. 91-116. [PDF]
  • Kirschvink, J.L., and Hagadorn, J.W., 2000, A grand unified theory of biomineralization: in Bauerlein, E., ed., The biomineralization of nano- and micro-structures, Wiley-VCH Verlag GmbH, Weinheim, Germany, p. 139-149. [PDF]
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, p. 61-89. [PDF]
  • Bottjer, D. J., Etter, W., Hagadorn, J.W., and Tang, C.M., 2002, Fossil-lagerstatten: Jewels of the fossil record, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, p. 1-10. [PDF]

House Range Utah Fossils

  • Briggs, D. E. G., 1976, The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia: Geological Survey of Canada Bulletin, v. 264, p. 1-29. [Link]
  • Briggs, D. E. G., B. S. Lieberman, S. L. Halgedahl, and R. D. Jarrard, 2005. A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia, Palaeontology, 48, 681-686.
  • Brooks, H.K., and Caster, Kenneth E. 1956. Pseudoarctolepis sharpi, N. gen., N. sp (Phyllocarida), from the Wheeler Shale of Utah. Journal of Paleontology, 30(1) 9-14.
  • Conway Morris, S., and R.A. Robison. 1988 More soft-bodied animals and algae from the middle Cambrian of Utah and British Columbia. University of Kansas Paleontological contributions.
  • Gunther, L. F., Gunther, V. G., and Gunther, G., 1994, Some Middle Cambrian fossils of Utah, in Special issue on Utah: Utah Geological Survey Public Information Series 26
  • Hintze, L. F. , 1988, Geologic history of Utah: Brigham Young University Geology Studies Special Publication 7, p. 14-19.
  • Gunther, Lloyd F. & Val G. (1981) Some Middle Cambrian Fossils of Utah. Brigham Young University Geology Studies, Volume 28, Part 1.
  • Robison, R.A. 1982. Some Middle Cambrian agnostoid trilobites from western North America. Journal of Paleontology, v. 56, no. 1, 133-160.
  • Robison, R.A. 1971. Additional Middle Cambrian Trilobites From the Wheeler Shale of Utah., Journal of Paleontology 45(5):796-804
  • Gaines, Robert R.; Droser, Mary L.; Kennedy, Martin J.; 2001. Taphonomy of soft-bodied preservation and ptychopariid Lagerstätte in the Wheeler Shale (Middle Cambrian), House Range, USA; controls and implications. PaleoBios, 21(Suppl.2):1-55. [Link]
  • Gaines, Robert R.; Kennedy, Martin J. Droser, Mary L. 2004. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeo, 220:193-205.
  • Gaines, Robert R.; Droser 2003. Paleoecology of the famliar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology, 31(11) 941-944. [Link]
  • Stokes, W. L., 1986, Geology of Utah: Utah Geological Survey Miscellaneous Publication S, p. 47-56.
  • Rigby, J.K. (1983). Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of western Millard County, Utah. Journal of Paleontology 57, 240-270.

Insecta and Hexapoda

  • Carapelli, A. F. Nardi, F. Dallai, R. & F. Frati, F. 2006. A review of molecular data for the phylogeny of basal hexapods. Pedobiologia 50 (2): 191–204
  • Gaunt M. and Miles M. 2002. An Insect Molecular Clock Dates the Origin of the Insects and Accords with Palaeontological and Biogeographic Landmarks. Molecular Biology and Evolution 19:748-761 (2002) [html]
  • Grimaldi, D. and Engel, M.S. (2005). Evolution of the Insects. Cambridge University Press.
  • Hinton, H.E. 1981. Biology of insect eggs. Pergamon Press, New York. 3 vol.
  • Holldöbler, B. & E.O. Wilson. 1990. The ants. Harvard Univ. Press, Cambridge, Mass.

Jawless Fish of Superclass Agnatha -- Theliodonts; Thelodonti; Anaspida, etc.

Kaili Biota

  • Lin, J.P., Taphonomy of Naraoiids (Arthropoda) from the Middle Cambrian Kaili Biota, Guizhou Province, South China, PALAIOS, February 2006; v. 21; no. 1; p. 15-25 [Abstract]

Krukowski Quarry

  • Hagadorn, J.W., Dott, R.H., and Damrow, D., 2002, Stranded on an Upper Cambrian shoreline: Medusae from Central Wisconsin: Geology, v. 30, p. 147-150. [PDF]
  • Damrow, D., Lipps, J., and Gershwin, L., Is Climactichnites really a trace fossil? GSA Annual Meeting, November 5-8, 2001. [Abstract]
  • Getty, P., 2005, Paleobiology of the Climactichnites Trackmaker: An Enigmatic Late Cambrian Animal Known only from Trace Fossils [Thesis]
  • Getty, P., and Hagadorn, J. W., 2005, Small Climactichnites trackways: Their abundance and implications for trackmaker physiology: Geological Society of America Abstracts with Programs [Abstract]
  • Hoxie, C., (2005) Late Cambrian Arthropod Trackways in Subaerially Exposed Environments [Thesis]
  • MacNaughton, R.B., Cole J.M., Dalrymple R.W., Braddy S.J., Briggs D.E.G. & Lukie T.
    D. 2002: First steps on land: Arthropod trackways in Cambrian-Ordovician [Abstract]
    eolian sandstone, southeastern Ontario, Canada. Geology 30, 391-394.
  • Seilacher-Drexler, E. & Seilacher A. 1999: Undertraces of Sea Pens and Moon Snails
    and possible fossil counterparts. Neues Jahrbuch fur Paläontogie und Geologie
    Abhandlungen 214, 195-210.
  • Vacarri, N.E., Edgecombe G.D. and Escudero C., 2004, Cambrian origins and affinities of an enigmatic fossil group of arthropods, Nature 430, 554-557. [PDF]
  • Yochelson, E.L. & Fedonkin, M.A. 1993: Paleobiology of Climactichnites, an enigmatic
    Late Cambrian fossil. Smithsonian Contributions to Paleobiology 74, 74.
  • York, A., Hagadorn, J. W., and Bernstein, J., 2005, Upper Cambrian sand stromatolites of central Wisconsin: Geological Society of America Abstracts with Programs [Abstract]

Lebanon Lithographic Limestone

McAbee Fossil Beds

  • Dillhoff RM, Leopold EH, and Manchester SR, 2005, The McAbee flora of British Columbia and its relation to the Early–Middle Eocene Okanagan Highlands flora of the Pacific Northwest, Can. J. Earth Sci. 42: 151–166. [PDF]

Paleobiology: Fossils through Time

Paleogeography and Plate Tectonics

Pioche Formation

  • Hintze, L.H., and Robison, R.A., 1975, Middle Cambrian stratigraphy of the House, Wah Wah, and adjacent ranges in western Utah: Geological Society of America Bulletin, v. 86, no. 7, p. 881-891.
  • Walcott, C.D., 1908, Cambrian geology and paleontology, I; No. 1, Nomenclature of some Cambrian Cordilleran formations: Smithsonian Miscellaneous Collections, v. 53, p. 1-12.
  • Fritz, W. H. 1968. Lower and early Middle Cambrian trilobites from the Pioche Shale, east-central Nevada, U.S.A. Palaeontology 11: 183-235.
  • Lieberman, A (2003) New Soft-Bodied Fauana: The Pioche Formation of Nevada. Journal of Paleontology. 77(4) 674-690. [Link]
  • Moore, R. A. (2009). "Preservation of Early and Middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA". Palaeogeography Palaeoclimatology Palaeoecology 277: 57–42.
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, Chapter 4, p. 61-89. [Link]
  • Hagadorn, J.W., 2002, Burgess Shale: Cambrian explosion in full bloom, in Bottjer, D.J., et al., eds., Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life: Columbia University Press, New York, p. 61-89. [PDF]
  • Palmer, A.R., 1998, Terminal Early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation, Nevada. Journal of Paleontology, v. 72, p. 650-672.

Stromatolites (Archaean and Proterozoic paleobiology)

  • Altermann, W., & Schopf, J. W. (1995). Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res, 75(1-2), 65-90 [PubMed]
  • Anbar A, Knoll A, Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science. 2002 Aug 16;297(5584):1137-42.
  • Awramik, S. M., & Riding, R. (1988). Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci U S A, 85(5), 1327-1329.
  • Awramik, S. M. (1992). The oldest records of photosynthesis. Photosynth Res, 33, 75-89. [Pubmed]
  • Awramik, S. M. (2006). Palaeontology: respect for stromatolites. Nature, 441(7094), 700-701. [Pubmed]
  • Blank, C., Could Cyanobacteria have Provided the Source of Oxidants for Banded Iron Formation? 2002 Geological Society of America Annual Meeting.
  • Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., et al. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416(6876), 76-81. [Pubmed]
  • Cavalier-Smith T, The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354.
  • Canfield, D. E. (2006). Biochemistry: gas with an ancient history. Nature, 440(7083), 426-427.
  • Cloud, P. E., & Hagen, H. (1965). Electron Microscopy of the Gunflint Microflora: Preliminary Results. Proc Natl Acad Sci U S A, 54(1), 1-8
  • Cloud, P. E. (1965). The significance of the Gunflint (Precambrian) microflora. Science, 148, 27-35.
  • Cloud, P., Am. J. Sci. 272, 537 (1972).
  • Corsetti FA, Awramik SM, Pierce D, A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4399-404. Epub 2003 Apr 07.
  • Fedo, C. M., Whitehouse, M. J., & Kamber, B. S. (2006). Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland. Philos Trans R Soc Lond B Biol Sci, 361(1470), 851-867.
  • Gernot Arp,* Andreas Reimer, Joachim Reitner Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans, Science, Vol 292, Issue 5522, 1701-1704 , 1 June 2001.
  • Evolution of the Early Atmosphere, Hydrosphere, and Biosphere I: Constraints from Ore Deposits, Session in the 2002 Geological Society of America Annual Meeting.
  • Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci, 27, 313-358. [PubMed]
  • Gupta, R. S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiology and Molecular Biology Reviews 62:1435-1491.
  • Gupta, R. S. 1998. What are archaebacteria: Life's third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Molecular Microbiology 29:695-707.
  • Gupta, R. S. (1997). Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Antonie Van Leeuwenhoek, 72(1), 49-61.
  • Gupta, R. S. (1998). Life's third domain (Archaea): an established fact or an endangered paradigm? Theor Popul Biol, 54(2), 91-104. [PubMed]
  • Gupta, R. S., Mukhtar, T., & Singh, B. (1999). Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol, 32(5), 893-906.
  • Gupta, R. S. (2000). The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev, 24(4), 367-402. [PubMed]
  • Han TM, Runnegar B, Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science. 1992 Jul 10;257(5067):232-5 [Pubmed]
  • House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., & Stetter, K. O. (2000). Carbon isotopic composition of individual Precambrian microfossils. Geology, 28(8), 707-710. [PubMed]
  • Karol, K., et. al., The Closest Living Relatives of Land Plants, Science, Vol 294, Issue 5550, 2351-2353 , 14 December 2001
  • Knoll, A. H., Barghorn, E.S, Awramik, S.M,. (1978). New organisms from the Aphebian Gunflint Iron Formation. Journal of Paleontology(52), 1074-1082.
  • Knoll, A., End of the Proterozoic eon, Sci Am. 1991 Oct;265(4):64-73. [Pubmed]
  • Knoll, A., Life on a Young Planet : The First Three Billion Years of Evolution on Earth
  • Konhauser, Kurt O., Could bacteria Form Precambrian Banded Iron Formations? 2002 Geological Society of America Annual Meeting.
  • Lowe, D. R. (1980). Stromatolites 3,400 Myr old from the Archean of Western Australia. Nature, 284, 441-443. [Nature]
  • Lowe, D. R. (1983). Restricted shallow water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambr. Res, 19, 239-283. [ScienceDirect]
  • Lowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387-390. [PubMed]
  • Lowe, D. R. (1995). Abiological origin of described stromatolites older than 3.2 Ga: reply. Geology, 23(2), 191-192. [PubMed]
  • Martin, M, et. al., Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A. 2002 September 17; 99 (19): 12246–12251.
  • Moreira, D, et. al., The origin of red algae and the evolution of chloroplasts, Nature 405, 69 - 72 (04 May 2000)
  • Narbonne, M., The Crucial 80% of Life's Epic, Science, Vol 301, Issue 5635, 919 , 15 August 2003.
  • Nyberg, A. V., & Schopf, J. W. (1984). Microfossils in stromatolitic cherts from the upper proterozoic Min'yar formation, southern Ural Mountains, USSR. J Paleontol, 58(3), 738-772.
  • Ohno S, The reason for as well as the consequence of the Cambrian explosion in animal evolution. J Mol Evol. 1997;44 Suppl 1:S23-7. [Pubmed]
  • Olcott, A., Corsetti F, and Stanley A, A New Look at Stromatolite Form Diversity, 2002 Geological Annual Meeting, Denver, October 2002.
  • Olson, J. M. (2006). Photosynthesis in the archean era. Photosynth Res, 88(2), 109-117. [Pubmed]
  • Paerl, H. W., Steppe, T. F., & Reid, R. P. (2001). Bacterially mediated precipitation in marine stromatolites. Environ Microbiol, 3(2), 123-130. [PubMed]
  • Philippe, H. and P. Forterre. 1999. The rooting of the universal tree of life is not reliable. Journal of Molecular Evolution 49:509-523.
  • Rasmussen B, Bengtson S, Fletcher IR, McNaughton NJ, Discoidal impressions and trace-like fossils more than 1200 million years old. Science. 2002 May 10;296(5570):1112-5.
  • Schopf J., Packer B., Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia, Science, 1987 Jul 3;237:70-3 [Pubmed]
  • Schopf, J. W. (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci, 361(1470), 869-885.
  • Shuhai X., et. al., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391, 553 - 558 (1998).
  • Poulton S, Fralick P and Canfield D, The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173 - 177 (09 September 2004); doi:10.1038/nature02912 [letters to Nature]
  • Woese, C. 1998. The universal ancestor. PNAS 95:6854-6859.
  • Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576-457
  • Wray, G., Dating the Origin of Animals, Science, Vol 274, Issue 5295, 1993-1997 , 20 December 1996

Stromatolite references below to be merged with those above using Endnotes:

  • Anbar A, Knoll A, Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science. 2002 Aug 16;297(5584):1137-42.
  • Blank, C., Could Cyanobacteria have Provided the Source of Oxidants for Banded Iron Formation? 2002 Geological Society of America Annual Meeting.
  • Cavalier-Smith T, The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354.
  • Cloud, P., Am. J. Sci. 272, 537 (1972).
  • Corsetti FA, Awramik SM, Pierce D, A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4399-404. Epub 2003 Apr 07.
  • Gernot Arp,* Andreas Reimer, Joachim Reitner Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans, Science, Vol 292, Issue 5522, 1701-1704 , 1 June 2001.
  • Han TM, Runnegar B, Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science. 1992 Jul 10;257(5067):232-5 [Pubmed]
  • Karol, K., et. al., The Closest Living Relatives of Land Plants, Science, Vol 294, Issue 5550, 2351-2353 , 14 December 2001
  • Konhauser, Kurt O., Could bacteria Form Precambrian Banded Iron Formations? 2002 Geological Society of America Annual Meeting.
  • Knoll, A., End of the Proterozoic eon, Sci Am. 1991 Oct;265(4):64-73. [Pubmed]
  • Knoll, A., Life on a Young Planet : The First Three Billion Years of Evolution on Earth
  • Olcott, A., Corsetti F, and Stanley A, A New Look at Stromatolite Form Diversity, 2002 Geological Annual Meeting, Denver, October 2002.
  • Evolution of the Early Atmosphere, Hydrosphere, and Biosphere I: Constraints from Ore Deposits, Session in the 2002 Geological Society of America Annual Meeting.
  • Gupta, R. S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiology and Molecular Biology Reviews 62:1435-1491.
  • Gupta, R. S. 1998. What are archaebacteria: Life's third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Molecular Microbiology 29:695-707.
  • Martin, M, et. al., Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A. 2002 September 17; 99 (19): 12246–12251.
  • Moreira, D, et. al., The origin of red algae and the evolution of chloroplasts, Nature 405, 69 - 72 (04 May 2000)
  • Narbonne, M., The Crucial 80% of Life's Epic, Science, Vol 301, Issue 5635, 919 , 15 August 2003.
  • Ohno S, The reason for as well as the consequence of the Cambrian explosion in animal evolution. J Mol Evol. 1997;44 Suppl 1:S23-7. [Pubmed]
  • Philippe, H. and P. Forterre. 1999. The rooting of the universal tree of life is not reliable. Journal of Molecular Evolution 49:509-523.
  • Rasmussen B, Bengtson S, Fletcher IR, McNaughton NJ, Discoidal impressions and trace-like fossils more than 1200 million years old.Science. 2002 May 10;296(5570):1112-5.
  • Schopf J., Packer B., Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia, Science, 1987 Jul 3;237:70-3 [Pubmed]
  • Shuhai X., et. al., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature 391, 553 - 558 (1998).
  • Poulton S, Fralick P and Canfield D, The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173 - 177 (09 September 2004); doi:10.1038/nature02912 [letters to Nature]
  • Woese, C. 1998. The universal ancestor. PNAS 95:6854-6859.
  • Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576-457
  • Wray, G., Dating the Origin of Animals, Science, Vol 274, Issue 5295, 1993-1997 , 20 December 1996

Taxonomy and Systematics

  • Bengtson, S. (1986) The problem of the Problematica. In Problematic Fossil Taxa, Vol. 5 (Eds, Hoffman, A. & Nitecki, M.H.) Oxford U. P., N.Y., & Clarendon, Oxford, pp. 3-11.
  • Mikko's Phylogeny Archive
  • Palaeos - A multi-authored Encyclopedia on the history of life on Earth

Trilobites

  • Whittington, H. B., Chang, W. T., Dean, W. T., Fortey, R. A., Jell, P. A., Laurie, J. R., Palmer, A. R., Repina, L. N., Rushton, A. W. A. & Shergold, J. H., 1997: Systematic Description of the class Trilobita. 331-481.
    in Kaesler, R. L., (eds.) 1997: Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revisited, vol 1: Indroduction, Order Agnostida; Order Redlichiida.
  • Mikko's Phylogeny Archive - Trilobita [Trilobita per se]
  • Fortey, R. A. (2001) Trilobite Systematics: The Last 75 Years. Journal of Paleontology 75(6), p. 1141-1151 [HTML]
  • Fortey, R. A. (2001) Olenid trilobites: The oldest known chemoautotrophic symbionts? PNAS 97(12), p. 6574-6578 [HTML] [pdf]
  • Gon III SM, The Orders of Trilobita. [HTML]
  • Richter, R. 1932. Crustacea (Paläotologie) in: R. Dittler. G Joos, E. Korschelt, G. Linek, F, Oltmanns, K. Schaum, eds., Handwörterbuch der Naturwissenschaften, 2nd ed. Gustav Fisher. Jena. p. 840-64, fig.A, 1-64. [Order Redlichiida, Suborder Redlichiina]

Agnostida Trilobites

  • Cotton, TJ and Fortey. RA. (2005) Comparative morphology and relationships of the Agnostida. In: Koenemann, S. & Jenner, R. (eds.). Crustacean Issues 16, Crustacea and Arthropod Relationships (CRC Press: Boca Raton). [PDF]
  • Fortey RA. (2001) Trilobite systematics: The last 75 years. Journal of Paleontology 7 Fortey, RA. and Theron J. (1994) A new Ordovician arthropod Soomaspis and the agnostid problem. Palaeontology 37:841-61.
  • Jell, P A (2003) Phylogeny of Early Cambrian trilobites. Special Papers in Palaeontology 70:45-57. 5:1141–1151.
  • Muller, KJ. and Walossek D. (1987) Morphology, ontogeny and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata 19:1-124.

Corynexochida Trilobites

  • Fortey, R A (1990) Ontogeny, hypostome attachment, and trilobite classification. J. of Paleontology. 33:529-76.
  • Fortey, R. A. 2001. Trilobite systematics: the last 75 years. Journal of Paleontology. 75(6):1141-51.
  • Jell, P.A. 2003. Phylogeny of Early Cambrian trilobites. Special Papers in Palaeontology 70:45-57.
  • Jell, P.A. & J.M. Adrain. 2003 Available generic names for trilobites. Memoirs of the Queensland Museum 48(2):331-553
  • Lee, Dong-Chan, and B. D. E. Chatterton. 2003. Protaspides of Leiostegium and their implications for membership of the order Corynexochida. Palaeontology 46(3):431-45.
  • Paterson, J.R. & G.D., Edgecombe. 2006. The Early Cambrian trilobite family Emuellidae Pocock, 1970: Systematic position and revision of Australian species. Journal of Paleontology 80(3): 496-513.
  • Whittington, H.B. 2003. The trilobite family Nileidae: Morphology and Classification. Palaeontology 46(4):635-46.

Redlichiida Trilobites

  • Fortey, R (2001) Trilobite systematics: The last 75 years Journal of Paleontology [HTML]
  • Fortey, R (2000). Olenid trilobites: The oldest known chemoautotrophic symbionts? PNAS | June 6, 2000 | vol. 97 | no. 12 | 6574-6578 [HTML]
  • Lieberman, BS, (2002) Phylogenetic analysis of some basal early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian radiationournal of Paleontology 76(4) [HTML]
  • Lieberman, BS, (1999) Testing the Darwinian Legacy of the Cambrian Radiation Using Trilobite Phylogeny and Biogeography Journal of Paleontology, 73(2) [HTML]
  • Palmer, AR (1998) Terminal Early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation, Nevada Journal of Paleontology, Jul 1998 [HTML]

Proetida Trilobites

  • Ebach, M.C. & K.J. McNamara. 2002. A systematic revision of the family Harpetidae (Trilobita). Records of the Western Australian Museum 21:135-67.
  • Fortey, R.A. 1990. Ontogeny, hypostome attachment and trilobite classification. Palaeontology 33:529-76.

Vendian Fossils

  • Fedonkin, MA. The origin of the Metazoa in the light of the Proterozoic fossil record: Fossils of the White Sea in Russia. Paleontological Research 7(1) 9-41. [PDF]
  • Dzik, J. (2003)Anatomical Information Content in the Ediacaran Fossils and Their Possible Zoological Affinities, Integrative and Comparative Biology 2003 43(1):114-126; doi:10.1093/icb/43.1.114 [html] [pdf] (Russian White Sea Taphony)